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Abstract. The paper presents a discussion of the relation between the dynamics of a mechanical
system based upon a Lagrangian admitting energy conservation and the dynamics based upon
its Jacobi Lagrangian, which determines the space trajectories of the system. The basic result
found in the paper is the general solution of the inverse problem, i.e. how to determine the full
Lagrangian, when as a starting point, an arbitrary homogeneous Lagrangian, which is used to
determine the space trajectories of a system, and an arbitrarily assigned energy function which
specifies the interaction of the system are piven.

1. Imtroduction

As is known, there are two different variational principles that lead to the equations of
motion for test particles in general relativity. If, in a coordinate system {x‘}, a world line
in a spacetime manifold (M, g) is described by equations of the form x' = £/(z) and £t
denote the derivatives of the functions & with respect to the parameter 7, then the first of
these principles is based on the action

s = f *JeEiiar W

while the action of the second principle reads as
tl -y .
W=t e @
n

where the parameter is denoted by ¢, in order to stress the difference between the two
dynamics.

Although the Euler-Lagrange equations in both cases are seemingly the same, there is
an essential difference between the two actions. In the first case, the action is invariant under
arbitrary reparametrizations of the world lines and, as a consequence of the second Noether
theorem, only three of the corresponding Euler-Lagrange equations are independent. This
indicates that the variational prineiple based on action (1) determines a world line understood
as a locus of points in the spacetime M. The parametrization of the world line is left
undetermined in this case. In the second case, the action is invariant only if a constant
is added to the parameter and thus action (2} leads to four independent Euler-Lagrange
equations which admit, due to the first Noether theorem, a first integral of the energy type.
As a result, the variational principle that starts from action (2) determines a world line in
M together with a definite parametrization along it. In other words, it determines a locus
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of points in the space M x R, where R is the real line from which the parameter ¢ in
(2) takes its values. However, if one compares the situation with that in the Newtonian
dynamics, the product space M x R is not now universal, i.e, it is not now independent of
the solution under consideration, and every solution to the dynamical problem determines
its own ‘time’ axis R.

Being prompted by the two examples discussed above, a more general question arises
of a possible relationship between a given action of the form

Wit 1 4] = f L@, ) 3)

I2

where ¢° = 4'(¢) describes a motion in a configuration space Q, ie. a ‘world line’ in
the space Q* x R, and an action which would describe a trajectory of this motion in the
configuration space Q" only.

This question is partially answered by the well known Jacobi variational principle [1]}
corresponding to an action of the type (3) in which one replaces the description of the motion
g' = ¢*(¢) in the space Q" x R by a description of the trajectory ¢’ = ¢'(z) in the space
Q" in terms of a geometric parameter T that is defined by a procedure based on the energy
conservation principle. Jacobi himself complained (in a book by Arnold (1978)) that, in
almost all text books, the Jacobi principle had been presented in a rather incomprehensibie
way. We sympathize with Arnold’s conviction that this tradition is also observed by almost
all contemporary writers (perhaps even by Amold himself), and in section 2 we attempt to
present a new derivation of the Jacobi principle which, in our opinion, clarifies the issue.
This derivation manifestly uses the fact that the Jacobi principle leads o a set of equations
that, on the other hand, could have been obtained from the dynamics determined by (3) as
a consequence of the elimination of one of the degrees of freedom by solving one of the
dynamical equations. The point here is that, in general, in other dynamical theories, in e.g.
classical field theory, it is not at all certain whether analogous reduction of some of the
degrees of freedom must lead to theories based again on variational principles [3,4].

In our opinion, in accordance with the just presented point of view, the Jacobi variational
principle is a consequence of the following theorem.

Theorem (Jacobi). Let g° = gq'(t) be a solution of the Euler-Lagrange equations
corresponding to action (3). Furthermore, let x* = x’(z) be a world line in Q7, being
a projection of the motion g° = ¢’(¢) from Q" x R to Q". Then there exists a Lagrangian
Ly = Ly(x*, y/) (where y/ = dx//dr) and a corresponding Jacobi action

Stot, 7 4] = f L), () dr @

Tz

such that the trajectories are solutions of the Euler-Lagrange equations corresponding to
(4). Moreover, the function Ly is homogeneous of degree one in the variables /.

The construction of the Jacobi Lagrangian is presented in section 2.

From the Jacobi theorem, it follows that the dynamics based on the Jacobi action
principle is reduced to the problem of finding geodesics in a particular Finsler space [5—
7]. As a consequence, a natural question arises as to whether the geodesic problem in

1 In [1], the Yacobi principle is, not quite correctly, called the Maupertuis principle.
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any given Finsler geometry can be considered as being equivalent to the Jacobi dynamics
corresponding to a dynamics of the type (3) determined by a certain Lagrangian £. Here,
this second problem is called the inverse Jacobi problem and its solution is presented in
section 3. In section 4 two simple examples are worked out which illustrate the formalism
developed in the previous sections. Another application and some basic prerequisites to the
problem are presented in [8].

Returning to the two examples quoted at the beginning of the paper, we see that the
action (1) is the Jacobi action corresponding to the dynamics determined by (2).

2. The Jacobi action principle

As is well known, the Enler-Lagrange equations of a dynamical system, described by
the action (3), are equivalent to the Hamilton action principle which requires that the
variation W = 0 for equal time variations of the dynamical variables g° such that
8g°'(t1) = 34'() = 0. As the first step towards a derivation of the Jacobi principle,
let us reformulate the Hamilton action principle by replacing the time variable ¢ by an
arbitrary parameter 7. Let us assume that the change in parametrization is determined by
a smooth and monotonic function # in the form ¢t = 8(r). When varying the action with
respect to the reparametrized world lines, one must take into account the fact that the change
in parametrization may depend on the world line. This is done by assuming that @ is an
additional dynamical variable. Thus, the new dynamical variables of the problem are now
(', 8),i=1,...,n, where x(t) = ¢' (8(r)) and the action is

Wlt, T %, 61 = f rzA(x*'(r),yf'(r),e"(r))dr (5)

71

where y/(z) = (dx/ /d7)(7), (1) = (d8/d7)(z) and
L ETAN
A,y .8y =L (x‘, E) B. (6)

The new Lagrange function A is a homogeneous function of degree one in the variables
(¥, 8), and therefore the system still has n degrees of freedom even if it is described by
n + 1 dypamical variables. The equal time variations will now correspond to variations
with, in general, different values of 7 on the world lires, say T and 7, respectively, and
therefore in the reformulated Hamilton principle one must use compiete variations of the
new dynamical variables,

Thus, two kinds of variation will be needed: the complete variations

59(1) =6(%) - 6(x) &x'(r) = #(F) - %' (1) 7
and the variations without the variation of the parameter
86(1) = 6(1) — 8(z) sx'(t) =#(r) - ' (v) (8)

where the tilde sign denotes that the corresponding variable is taken along a varied world
line. As a result, the obvious relationships must be observed

86(t) = 86(7) + 6(1)87(T) §x'(7) = 8x' () + Y (0)8T(T) ©)
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where 1 = T — 7 is the variation of the parameter. Furthermore,
5yl = 4 (8x/) and 5yl = 4 (8x7) + 378z (10)
de dr

where

= di dx/ . dzJ dxt
Vo=2@0-20 o= d—’f{(z) - ﬁ(t).

The fact that there are equal time variations in the original Hamilton principle now imposes
the condition

58(x) =6(H) —0(x) =0 (11)
which, by virtue of (9), means that
56(z) = —B(z)8T(7) (12}

i.e. only one of the variations §¢ and 87 is independent. Moreover, for the complete
variation we have

3x' (1) =3B @) — ¢'0F) =84 ) (13)

which means that it is equal to the equal time variation of the old dynamical variable ¢*.
Taking into account relations (6)—{13), one obtains that the complete variation of action
(5) is

W = WIH, T2 ¥ (), 8(5)] — Wln, ; x°(7), 8(1)]

2 d /,80\T., d [:9:
= 92 S g2V axi— S (6% 42} a0l
fn {[Hax‘ dr( 3y‘)] g dr( T ) } t

. A A
6—dbx' — @ y+6—=)8 4
+[ Byl (8 e 39) T:L s
where
., "
AMx', vy, 0 =L (x’, ?) (15)

is obviously a homogeneous function of degree zero in the variables (y/,8). Thus, due
to the Euler identity for homogeneous functions, the sum of the last two terms in the last
square bracket in (14) must vanish

A 2
v 8= = :
s T35 =0 (16)

Moreover, due to (13), the variation 5x'(7) vanishes at the integration boundaries and, as a
result, the variation principle §W = 0 Ieads to the n 4+ 1 equations of motion

. DA d /.3A
9*6-;‘.-—3;(93)7) =0 17)

axr
(9£+l) c (18)
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(where C is a fixed constant of integration) on the functions x’(z) and 6(r). With the aid
of {15) and {16), equation (18) can be wriiten in the form

E (x‘, 3:9—"') =C (19)

where
., £ . L.
B o) = ol 00k — L@, 00, @0)

Equation (19), in accordance with the implicit-function theorem, determines ¢ as a function
¢ (x', y/) of the variables x! and y/, and, furthermore, it permits one to express the partial
derivatives of ¢ in terms of those of the function E. From the last property, one easily
finds that (see appendix (A2))

a . A :
a—}ﬁ(x*, Yk = bx, ¥) @1

which meaps that the function ¢ determined by (19) is necessarily homogeneous of degree
one in the variables ¥/, One should note that (19) determines @ as a function of the variables
x* and y/ if, and only if,

AE . . .
ey Ii 1’6 0
rasiiaika

which implies, with the aid of (20), that{

2

‘C F 2 SN
prerari CAP DA b lY

If (19) is solved for 8, and the function ¢ (x’, ¥/) is known, one can substitute it for & in
(17) and obtain » differential equations for the functions x‘(z) which renders a parametric
description of a trajectory corresponding to the motion determined by the functions g(z).
The point, which we will now demonstrate, is that the equations resulting from such
a substitution are again Euler-Lagrange equations, but with a certain new Lagrangian
Ly(x!, y') whose form will also be found,

When making the substitution § = ¢(x', y/), one must first compute all the derivatives
which appear in (17), to be able, in the next step, to substitute inio these equations the
expressions for § and 4. This procedure can be facilitated by the following observations.

First, if 8 = ¢ (x%, y¥), then

e Lot yiy= 28, 8y
6= OGN = g+ o0y 22)

whence, if for any function F(x‘, y/,d) we introduce the notation
it yy=F@&, ¥, ¢G5, 5

t This inequality might be considered as a condition on velocities for which the Jacobi procedure is applicable.
For instance, action (2) cannot be reduced to (1) if the velocities are null vectors with respect (o g;;.
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then

i i ol 4 _i ek
[y o] =g @)

Next, making use of (15} and (19), we have

. 3 ] ol 39 [dx
f—— = (¥, y) ; - (——)
[ 3%’ Sppiat gy [3*” 77 \86 / jgit 3y

ek oy Ox __lj__fi[ﬁ( Q’i)]
=P * G aw (30 "7 b4y
= ¢(x*, y’)ail; o+ (A%, Y + E(GF, y’))@:
X dxt
.
= ?I(l(xk, ) + O 5, ¥ (24)

and similarly

QA 8r @
(15|55 (3)
3y Jo—pietyn 3y' \ 88 /5piat, ¥)

AN S 8¢[ (ry_‘)]
._qf:(x,y) 3 ¢(x" Yy 3yt | avd x’é bzt y)

= bk, y >:

.
= a‘jﬁ““x )+ O, 01 (25)

— + GG Y+ EGH y))

Thus, as a consequence of the substitution of 6 = ¢(x*, ¥') into (17), we obtain the
equations

_f"_ e kool kol H_,E_ __f?__ Te kool ool
0K ) + OB Y - 1 { 57005 ) + Ot ,y>1] =0 26)
where

Tk oy k ¥
A Y) *‘C(x ’ ¢(x",yf))

which are again Euler-Lagrange equations, but with the Jacobi Lagrangian

Li(x*, ) = (x5, ¥ + O)pix*, »)

)
S TN b=pixt 1)

which additionally depends on the values of the integration constant C. This constant
also enters the definition of ¢ by means of (19). As a result, (27) really determines a
one-parametric family of Lagrangians.
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‘Whereas the second equality in (27) can be found in the literature (e.g. in [1]), we
would like to indicate that the first equality in (27) seems to be more convenient for
applications. Furthermore, the first equality in (27) resembles the field-theoretical Fokkerian
action described in [3]; cf also [4].

Let us observe that, due to the fact that ¢ (x¢, y/) is homogeneous of degree one in y/,
then the function A(x?, ) must be hemogeneous in y! of degree zero and the Lagrangian -
Ly(x', y¥) is again homogeneous in y/ of degree one. In the appendix, it is shown, that if
the Lagrangian £ is non-singular, i.e. if

9L
det(aufauf) #0

then the rank of the matrix (82L;/9y'8y/) is n — 1. This means that L; is then a Lagrangian
of the type considered in the Finslerian geometry [8].

From the procedure presented here, it follows that finding a solution that determines a
motion of the dynamical system described by the original action (3) can now be reduced
to first solving the Euler-Lagrange equations of the Jacobi Lagrangian (27), which define
the path of the motion in terms of a set of functions x’(z), and secondly by determining a
relation, given by a function ¢t = f(r), between the parameter v (used for the description
of the path) and the Newtonian time ¢ from the energy condition (19), which now takes the
form of a differential equation for the function f:

iy ()
f - =C. 2
E (x @, f(r)) c (28)

3. The solution of the inverse Jacobi problem

As we have seen, a Jacobi Lagrangian L; is always a homogeneous Lagrangian of the
type considered in the Finslerian geometry. A natural question arises as to whether any
Lagrangian which is of the Finslerian type can be considered as a Jacobi Lagrangian for a
dynamical system based on a non-singular Lagrangian £. As was shown in [8], the answer
to that question is positive, since any Lagrangian L of the Finslerian type is a Jacobi
Lagrangian for the L?, which is non-singular. This solution cannot, however, be a unique
one, since, as follows from section 2, any non-singular conservative Lagrangian £ (not
necessarily homogeneous of degree two in velocities) leads to a Jacobi Lagrangian, which
is homogeneous of degree one in velocities. In this section, we will present a systematic
method that permits us to construct a ‘primary’ Lagrangian £(¢’, v/) for which an a priori
given Lagrangian L(x’, '), homogeneous of degree one in y/, is its Jacobi Lagrangian,
Simultaneously, the method will reveal which additional data must be given to make the
solution of the problem unique.
The Euler-Lagrange equations for a homogeneous Lagrangian L

gf‘.- =0 29

if taken alone, do not admit a unique solution. In Finsler geometry [8], in order
to obtain a unique solution, these equations are completed by an algebraic equation
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L(x'(z), ¥/ (z)) = constant, which introduces an affine parametrization. Instead of doing
this, one can, however, supplement (29) by any other algebraic equation of the form

EG,yhy=cC (30)
where E is a given function such that
9L _
o 3
det | 978 | 10 G1)

2E
ay’

where & = 1,...,n — 1. The adding of (30) to (29) leads again to a unique solution
which describes the same world line as before, but now, in general, in terms of a non-affine
parameter.

Now we would like to find such a Lagrangian £(g’, v/) for which a given homogeneous
Lagrangian L(x!, /) would be its Jacobi Lagrangian, whereas (30) would be a consequence
(cf (28)) of the energy conservation law for £(g*, v/).

The solution to this problem will be found in two steps. In the first siep, a family
of Lagrangians £ will be constructed for which a given function E(g’, v/) is its energy
function. Since a Lagrangian and its energy function are related to each other by a Legendre
transformation (20), we can consider the equation '

aL L
1= . nt~ -
v o ey P L=E (32)

as a partial differential equation for an unknown function £(g’, v/). In this equation, v’ are
independent variables and ¢/ are treated as parameters. By suppressing the dependence on
the parameters, (32) can be treated as a linear inhomogeneous partial differential equation of
the first order for £(v*). In accordance with the general method of solving such equations,
£ will be sought in the form of an implicit function

vi{c, v, ..., ") =0. (33)

Therefore, (32) will become a linear homogeneous differential equation

av av oV
I— . e st —_—
v 3v’+ +v 3v”+(£+E)BL O {34)

for the function V(£, v!, ..., v"). The cormresponding characteristic equations

do! & dc
= == 4 33
-~ » L+E O (33)

can then easily be solved explicitly in the form

(1) = ¢;e°

(36)
L) =¢F [ f EG@NT)e " dr + c]

where ¢ now parametrizes the solutions and where the indefinite integral is used, with c¢;
and ¢ being n + 1 integration constants.



The inverse Jacobi problem 3229

Solving (34) requires knowledge of a complete set of independent first integrals of (35).

We can construct them by eliminating T from the solutions (36). Thus, a possible complete
set of the first integrals of (35) is given by the set of functions

vt

A(pdY) = =&
Yi(v) = N Gi €¥))
Yo, L) = £ fE(vj(r)); dr =¢ (38)
~ vkok VYRR (T)
where the summation convention apblies to all indices ranging from 1 to » and the relations
Jotul .
o= VIV LG f=— (39)

have been used. The indpﬁnite integral in (38) can be simplified after the integration variable
T is replaced by p = (v*v111/2, We then have

v'dv’ v d(ce) 7_

dp = = =
NS A vk pk

pdz (40}

and

, 1 1
I= | Ew@)————dr=( [ EGp)~4 41
f O ) e te ( f @0 p)m 41

where the index ‘subst’ means that first the integration should be performed, and then
afterwards the expressions

v
— o Euk 2
p=+~vky € =

should be substituted for the variables p and &;. Thus, in (41) we first have to compute the
integral -

42)

; 1
fE(c:p, ---,cmo)ﬁ do (43)

and we maj, meanwhile, disregard the way in which the integration variable was defined.
To facilitate the computation, we introduce a new variable

;

vkyk
p

K =

where, from the point of view of the integration in (43), ~/v*v* is just a constant factor.
Thus,

. ..‘ 1. 1 v
[E(Clp, Leay C,,p)’—.; dp = “m[ E (?) de. (44)
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Performing now the substitution (42}, we obtain the first integral (38) in the form

o] s
Wg(v,ﬁ)—w{ﬁ-}-(fﬂ'(’c)dic)x=]]. 5)

In accordance with the general method of solving first-order partial differential equations,
the general solution of (34) is of the form

V= V@', L), 1(v'). ..., ¥ (') (46)

where V is an arbitrary function in # 4 1 variables. Therefore, the general solution of (32)
is given in an implicit form as

(taler ([£(2) ). ) stim) o 0

o ([ o)

where ® is another arbitrary function. In other words, a Lagrangian L(g*, v/) determined
by a given energy function E(g*, v/) is

L(d', vy = —( f E (q', "') dx) + Al VY (49)
k=1

where A(g’, v/) is an arbitrary function, homogeneous of degree one in the variables v/,
This is a general formula that determines a class of Lagrangians £ describing a conservative
dynamical system in terms of an a priori assigned energy function E of the system and an
arbitrary homogeneous Lagrangian A. Formula (49) would certainly be helpful when trying
to find a solution to the inverse Lagrange problem, i.e. finding a Lagrangian that leads to a
system of differential equations describing a conservative dynamical syster.

Now, in the next step of the procedure, we will remove the arbitrariness of A by making
use of the requirement that a given homogeneous Lagrangian L(x’, y/) must be the Jacobi
Lagrangian corresponding to the Lagrangian (49).

In accordance with the Jacobi procedure described in section 2, to determine the Jacobi
Lagrangian, one must first solve (19) in order to express 6 as a function ¢ of the variables
x! and y/. After the function ¢ is known, the Jacobi Lagrangian can be found from (27).
The application of this formula requires replacing in the Lagrangian £(g*, v/) the variables
g' by x* and v/ by y//¢(x*, ¥'). Since A in (49) is 2 homogeneous function, we have

i iy 1 i
( RS k’yz)) [ ( ’ff¢(x",y‘)) dx:|x=[+¢(x’°,y’)A(x’yj)' (50)

Making use of the first equality in (27), we obtain

' M¢ (‘E T y ) ¢ ( )

or
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If we now equate the above expression and the known homogeneous Lagrangian L(x*, y/),
we obtain an equation which permits us to determine the unknown function A as

A(x',yi)=ch*,yf>+[ / E(x‘,m) dx] b0, y) — Co,y). (D)
4 x=1

Throughout this equation, we can change the variables (x’, y/) to (¢°, v/) and substitute
the expression for A into (49). We obtain

. . S .oyl . .
| 1 O R

(53)

By introducing a new integration variable k¢ (g*, v/) in the first of the integrals in (53), we
can convert the two indefinite integrals into a definite one, obtaining

; : . , . gt B Uj
L(g',v') = Lig', v/) — Co(g', v/) + f E (Q’, ?) dk. (54)
1

Equation (54) represents the final formula which determines the Lagrangian L(g’, v/) in
terms of an @ priori given energy function E(g', v/) and an a priori given homogeneous
Lagrangian L{x*, y/) which, for a selected value of the energy constant C, is the Jacobi
Lagrangian for £(g’, v/). The energy function defines, by means of (19), the function
@(x‘, y/) which is also required for defining the explicit expression for £(g°, v/).

4. Examples
To illustrate the procedure decribed in section 2, let us take a Lagrangian of the form
L v) =T, vy +1(¢', v)) - V(g) ' (35)

where T is the ‘kinetic’ energy, which is assumed to be a homogeneous function of degree
two in the velocities v/

T(q', ko)) = KT (g’ v). (56)
The function 7 is the ‘interaction’ energy, being homogeneous of degree one in the velocities
I(g', kv'y =kI(g', v)) G

and V is the ‘potential’ energy.
The assumptions (56} and (37) imply the following Eunler identities

aT . 81 , .
W‘U =27 EEEU :I. (58)

Taking these identities into account, one can easily show that, in the present case, the energy
function (20} is

E(g vy =T v} + V{g'). (59)
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The construction of the Jacobi Lagrangian, corresponding to (55), starts by solving (19)
with respect to 6. In our example, (19) takes the form

i .
T (x’, ?) +V(@gHh=C (60)

and, due to homogeneity assumptions, its solution is

q T(xiv yJ) )
@ —Jc_—v(x—i). - (61)

The function ¢ introduced in section 2 is now given by the right-hand side of (61). It is
evident that, in this example, ¢ is homogeneous of degree one in the variables y/, which is
in accordance with the general property (21). The next element required for the construction
of the Jacobi Lagrangian (27) is the function A, which is defined as

i .y

AL, yy=L| 2, ——1}. 62
70 (x ¢cx*,yf)) ©»

In the present case, it is

T(x¥) _[_I(X",yf)

P2k, ¥ P(xk, ¥

Substituting the expressions (61) for ¢ and (63) for A into (27), we find the final form of
the Jacobi Lagrangian corresponding to (55):

Li(x, ¥y = 2T, y)VC — VEh) + I(x, y). (64)

In the particular case of

A,y = - V(x). (63)

PR PN . - é i :
T(g', vy = 1g(g" W'/ I(q’,u1)=;mcq")v Vigh =0 c=1

Ly, y') = /gy yiy) + S 4 ()’

which, in particular, demonstrates how action (1) may be deduced from (2).
As another example, formula (49) may be used to find all the Lagrangians £ = £(g*, v/)
which admit an energy function of the form

E(g', vy =T v)) + V(g

where T is again a homogeneous function of degree two in v/, Since

i v/ l _ P de i f
f[T(q,?)+V(q)] dfc—T(q,v’)f;-i-V(q) dx
then from (49} we have
L', vy =T(g', v)) = V(g + A", V)

where A is an arbitrary function, homogeneous of degree one in the variables v/.
Yet another application of the present formalism to the standard homogeneous dynamics
can be found in [8].

we obtain



The inverse Jacobi problem 3233
Acknowledgments

This work has been partly supported by the Polish Research Program KBN, contract PB
564/2/91, registration no 2 0430 91 0O1.

Appendix

In accordance with the implicit-function theorem, by virtue of (19), we can calculate the
derivatives of the function ¢ with respect to the variables x' and y/:

) 9E (3E N}
o o2 (22)
3¢ 3E \!
ay,—qiﬁ (my") : (a2

Starting from definition (27) of the homogeneous Lagrangian L;, with the aid of (A2) and
(20), we obtain

3%L; L 9L P L7 - L 82L
ol K e irwemrawd A Al e rowd Aivarreamd 4l I €2

ay dy/ dvtadns dvmdy dvtov duwout

Let

v gyt

- ~1
y'”y") N )

r = rank 9Ly
B dy'ays

where r < n. To prove that r = 1 — 1, as stated in the discussion following (27}, suppose
that r < 7 — 1. It can easily be checked using (A3) that, always,

8L,

J =
s3> =0 A%)

i.e. the vector (3',...,¥") is an eigenvector of the matrix (32L;/8y'dy/) belonging to
an eigenvalue equal to zero. Because r < n — 1, there must exist another vector, say
(z, ..., z%, which is linearly independent of (y!,..., y"), such that

L;

-
5% =0 (AS)

Contracting (A3) with z/, using (A5), gives, after some manipulations,

8L z! ¥

— | ——] =0 A6
dvi v/ ?2L L, 2L . . (46)
duman’ © avmavﬂy Y

Because the vectors ¥ and z/ are linearly independent, the vector in the brackets in (A6)is a
non-zero vector. Thus, (A6) implies that zero is the eigenvalue of the matrix (8°£/8v'8v/),
which means that det(3*£/3v'3v/) = 0. As a result, if det(32L£/0v'8v’) # 0, we must
always have r = n — 1.
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