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Abstract. The paper presents a discussion of the relation behveen the dynamics of a mechanical 
system based upon a Lagrangian admitting energy conservation and the dynamics based upon 
its lacobi Lagrangian. which determines the space trajectories of the system The basic result 
found in the paper is the general solution of the inverse problem, i.e. how to determine the full 
La5angian. when~as a starting point, an arbitrary homogeneous Lagrangian, which is used to 
determine the space trajectories of a system and an arbitrarily assigned energy function which 
speeifes the interaction of the system are given. 

1. Introduction 

As is known, there are two different variational principles that lead to the equations of 
motion for test particles in general relativity. If, in a coordinate system { x ' ] ,  a world line 
in a spacetime manifold (M,g )  is described by equations of the form xi = F'(r) and hi 
denote the derivatives of the functions with respect to the parameter z, then the first of 
these principles is based on the action 

S = I" G d r  

while the action of the second principle reads as 

where the parameter is denoted by t ,  in order to stress the difference between the two 
dynamics. 

Although the Euler-Lagrange equations in both cases are seemingly the same, there is 
an essential difference between the two actions. In the first case, the action is invariant under 
arbitrary reparametrizations of the world lines and, as a consequence of the second Noether 
theorem, only three of the corresponding Euler-Lagrange equations are independent. This 
indicates that the variational principle based on action (1) determines a world line understood 
as a locus of points in the spacetime M .  The parametrization of the world line is lefi 
undetermined in this case. In the second case, the action is invariant only if a constant 
is added to the parameter and thus action (2) leads to four independent Euler-Lagrange 
equations which admit, due to the first Noether theorem, a first integral of the energy type. 
As a result, the variational principle that starts from action (2) determines a world line in 
M together with a definite parametrization along it. In other words, it determines a locus 
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of points in the space M x R, where R is the real line from which the parameter t in 
(2)  takes its values. However, if one compares the situation with that in the Newtonian 
dynamics, the product space M x R is not now universal, i.e. it is not now independent of 
the solution under consideration, and every solution to the dynamical problem determines 
its own 'time' axis R. 

Being prompted by the two examples discussed above, a more general question arises 
of a possible relationship between a given action of the form 

S L Baiariski and P Jaranowski 

J h 

where q' = $ ( t )  describes a motion in a configuration space Q", i.e. a 'world line' in 
the space Q" x R, and an action which would describe a trajectory of this motion in the 
configuration space Q" only. 

This question is partially answered by the well known Jacobi variational principle [l]t 
corresponding to an action of the type (3) in which one replaces the description of the motion 
q' = q i ( t )  in the space Q" x R by a description of the trajectory q' = q'(r) in the space 
Q" in terms of a geometric parameter r that is defined by a procedure based on the energy 
conservation principle. Jacobi himself complained (in a book by Amold (1978)) that, in 
almost all text books, the Jacobi principle had been presented in a rather incomprehensible 
way. We sympathize with Arnold's conviction that this tradition is also observed by almost 
all contemporary writers (perhaps even by Amold himself), and in section 2 we attempt to 
present a new derivation of the Jacobi principle which, in our opinion, clarifies the issue. 
This derivation manifestly uses the fact that the Jacobi principle leads to a set of equations 
that, on the other hand, could have been obtained from the dynamics determined by (3) as 
a consequence ofthe elimination of one of the degrees of freedom by solving one of the 
dynamical equations. The point here is that, in general, in other dynamical theories, in e.g. 
classical field theory, it is not at all certain whether analogous reduction of some of the 
degrees of freedom must lead to theories based again on variational principles [3,4]. 

In our opinion, in accordance with the just presented point of view, the Jacobi variational 
principle is a consequence of the following theorem. 

Theorem (Jacobi). Let q' = 4'(t) be a solution of the Euler-Lagrange equations 
corresponding to action (3). Furthermore, let x i  = ~'(t) be a world line in Q", being 
a projection of the motion q' = q'(t) from Q" x R to Q". Then there exists a Lagrangian 
LJ = L J ( x i ,  yj)  (where y j  = dxj/dr) and a corresponding Jacobi action 

such that the trajectories are solutions of the Euler-Lagrange equations corresponding to 
(4). Moreover, the function LJ is homogeneous of degree one in the variables yj. 

The construction of the Jacobi Lagrangian is presented in section 2. 
From the Jacobi theorem, it follows that the dynamics based on the Jacobi action 

principle is reduced to the problem of finding geodesics in a particular Finsler space [S- 
71. AS a consequence, a natural question arises as to whether the geodesic problem in 

t In [I]. the Jawbi principle is, not quite correctly, called the Maupemis principle 



The inverse Jacobi problem 3223 

any given Finsler geometry can be considered as being equivalent to the Jacobi dynamics 
corresponding to a dynamics of the type (3) determined by a certain Lagrangian C. Here, 
this second problem is called the inverse Jacobi problem and its solution is presented in 
section 3. In section 4 two simple examples are worked out which illustrate the formalism 
developed in the previous sections. Another application and some basic prerequisites to the 
problem are presented in [8]. 

Returning to the two examples quoted at the beginning of the paper, we see that the 
action (1) is the Jacobi action corresponding to the dynamics determined by (2). 

2. The Jacobi action principle 

As is well known, the Euler-Lagrange equations of a dynamical system, described by 
the action (3), are equivalent to the Hamilton action principle which requires that the 
variation SW = 0 for equal time variations of the dynamical variables q' such that 
Sq'(E1) = Sq ' ( t2)  = 0. As the first step towards a derivation of the Jacobi principle, 
let us reformulate the Hamilton action principle by replacing the time variable E by an 
arbitrary parameter z. Let us assume that the change in parametrization is determined by 
a smooth and monotonic function 6 in the form I = S(r). When varying the action with 
respect to the reparamebized world lines, one must take into account the fact that the change 
in parametrization may depend on the world line. This is done by assuming that 0 is an 
additional dynamical variable. Thus, the new dynamical variables of the problem are now 
(x', e), i = 1,. . . , n, where x i ( r )  = q' (O(r)) and the action is 

where yj(r)  = (dxj/dz)(z), b(r) = (de/dz)(r) and 

The new Lagange function A is a homogeneous function of degree one in the variables 
(y',  e ) ,  and therefore the system still has n degrees of freedom even if it is described by 
n + 1 dynamical variables. The equal time variations will now correspond to variations 
with, in general, different values of z on the world lines, say i and r ,  respectively, and 
therefore in the reformulated Hamilton principle one must use complete variations of the 
new dynamical variables. 

Thus, two kinds of variation will be needed: the complete variations 

%qs) = g(.t) - e(r) 82(z) = ?'(i) - xi(z) (7) 

and the variations without the variation of the parameter 

~ ( t )  = i(r) - e(r )  Sx'(r) = i ' ( r )  - x' (z)  (8 )  

where the tilde sign denotes that the corresponding variable is taken along a varied world 
line. As a result, the obvious relationships must be observed 

= s e ( q  +e(r)Sr(r) ki(t) = Sx'(r) + y'(z)sr(t) (9) 
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where Ss = i - r is the variation of the parameter. Furthermore, 

where 

dxj d2j  dxj  
d i  d r  d s  d r  8Yj(?) = -(?I - -(r)  Sy j ( r )  = -(T) - -(?). 

The fact that there are equal time variations in the original Hamilton principle now imposes 
the condition 

(11) 8e(r) = B(i) - e(r) = o 

se(?) = - 6 ( T ) 8 5 ( 5 )  (12) 

which, by virtue of (9), means that 

i.e. only one of the variations SO and Sr is independent. Moreover, for the complete 
variation we have 

8Xi(T) = 2(6(?)) - q'(o(?)) = 6q'(t) (13) 

which means that it is equal to the equal time variation of the old dynamical variable 9'. 
Taking into account relations (6G13), one obtains that the complete variation of action 

(5) is 

where 

is obviously a homogeneous function of degree zero in the variables (yj.6). Thus, due 
to the Euler identity for homogeneous functions, the sum of the last two terms in the last 
square bracket in (14) must vanish 

ah . . ah  
-y'+e-=o. 
ayj ae 

Moreover, due to (13). the variation 8xi(s) vanishes at the integration boundaries and, as a 
result, the variation principle 8W = 0 leads to the n + 1 equations of motion 
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(where C is a fixed constant of integration) on the functions xi(z) and e(r).  With the aid 
of (15) and (16), equation (18) can be written in the form 

E x ' ,  - = c ( ,  'd) 
where 

(20) 
ac . . 
au 

E ( q ' , u j ) =  + q ' . u ' ) u k - c ( q i , u j ) .  

Equation (19), in accordance with the implicit-function theorem, determines 8 as a function 
@(xi, y j )  of the variables xi and y j ,  and, furthermore, it permits one to express the partial 
derivatives of @ in terms of those of the function E. From the last property, one easily 
finds that (see appendix (A2)) 

. .  
(21) 

which means that the function @ determined by (19) is necessarily homogeneous of degree 
one in the variables y j .  One should note that (19) determines 8 as a function of the variables 
xi and y j  if, and only if, 

a@ - ( x J ,  Y j ) Y K  =@(xi, Y') 
ayk 

which implies, with the aid of (20), thatt 

If (19) is solved for 8. and the function @(xi, y j )  is known, one can substitute it for 8 in 
(17) and obtain n differential equations for the functions xi(r) which renders a parametric 
description of a trajectory corresponding to the motion determined by the functions q i ( t ) .  
The point, which we will now demonstrate, is that the equations resulting from such 
a substitution are again Euler-hpnge equations, but with a certain new Lagrangian 
LJ(x',  y') whose form will also be found. 

When making the substitution 8 = r$(xi, y j ) ,  one must lirst compute all the derivatives 
which appear in (17), to be able, in the next step, to substitute into these equations the 
expressions for 6 and 0. This procedure can be facilitated by the following observations. 

First, if 8 = @ ( x i ,  y j ) ,  then 

. . d  . .  a@ . a @ .  
d s  axk a y k ~  

8 = - ( @ ( X I ,  y'))  = -xk + - y k  

whence, if for any function F(x',  y j ,  8) we introduce the notation 

P(x ' ,  y ' )  = F ( 2 ,  y j ,  @(P, y ' ) )  

t This inequality might be considered as a condition on velocities for which the Jawbi procedure is applicable, 
For instance, action (2) cannot be reduced to (I) if the velocities are null vectors with respect to gi j .  
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then 

Next, making use of (15) and (19), we have 

and similarly 

k I " k 1 '6 = @ ( x  , y )y + (W. Y') + &x , y 1)- 
ay ay' 

= - [ (A(xk, Y 9  -I- C ) 4 ( X k ,  Y 9 l .  (25) 
a . .  

ay1 

Thus, as a consequence of the substitution of 4 = +(x' ,  y') into (17), we obtain the 
equations 

where 

which are again Euler-Lagrange equations, but with the Jacobi Lagrangian 

L,(xk, Y') = (W. Y') + C ) @ ( X k ,  Y') 

which additionally depends on the values of the integration constant C. This constant 
also enters the definition of @ by means of (19). As a result, (27) really determines a 
one-parametric family of Lagrangians. 
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Whereas the second equality in (27) can be found in the literature (e.g. in [l]), we 
would like to indicate that the first equality in (27) seems to be more convenient for 
applications. Furthermore, the lirst equality in (27) resembles the field-theoretical Fokkerian 
action described in [3]; cf also [4]. 

Let us observe that, due to the fact that $ ( x i ,  y j )  is homogeneous of degree one in yj, 
then the function X(x' ,  yj) must be homogeneous in yj of degree zero and the Lagrangian 
LJ(x', y j )  is again homogeneous in yj of degree one. In the appendix, it is shown, that if 
the Lagrangian 1: is non-singular, i.e. if 

then the rank of the matrix (a2LJ/3y'ayj) is n - 1. This means that LJ is then a Lagrangian 
of the type considered in the Finslerian geometry [8]. 

From the procedure presented here, it follows that finding a solution that'detennines a 
motion of the dynamical system described by the original action (3) can now be reduced 
to first solving the Euler-Lagrange equations of the Jacobi Lagrangian (27), which define 
the path of the motion in terms of a set of functions x ' (z ) ,  and secondly by determining a 
relation, given by a function t = f (r), between the parameter z (used for the description 
of the path) and the Newtonian time t from the energy condition (19), which now takes the 
form of a differential equation for the function f: 

E ( x i ( r ) ,  -) = c. 

3. The solution of the inverse Jacobi problem 

As we have seen, a Jacobi Lagrangian LJ is always a homogeneous Lagrangian of the 
type considered in the Finslerian geometry. A natural question arises as to whether any 
Lagrangian which is of the Finslerian type can be considered as a Jacobi Lagrangian for a 
dynamical system based on a non-singular Lagrangian C. As was shown in [SI, the answer 
to that question is positive, since any Lagrangian L of the Finslerian type is a Jacobi 
Lagrangian for the L2, which is non-singular. This solution cannot, however, be a unique 
one, since, as follows from section 2, any non-singular conservative Lagrangian C. (not 
necessarily homogeneous of degree two in velocities) leads to a Jacobi Lagrangian, which 
is homogeneous of degree one in velocities. In this section, we will present a systematic 
method that permits us to consmct a 'primary' Lagrangian L(q', U') for which an apriori 
given Lagrangian L(x',  yj), homogeneous of degree one in yj, is its Jacobi Lagrangian. 
Simultaneously, the method will reveal which additional data must be given to make the 
solution of the problem unique. 

The Euler-Lagrange equations for a homogeneous Lagrangian L 

SL z = o  

if taken alone, do not admit a unique solution. In Finder geomelry [SI, in order 
to obtain a unique solution, these equations are completed by an algebraic equation 
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L(x i ( r ) ,  y j ( r ) )  = constant, which introduces an affine parametrization. Instead of doing 
this, one can, however, supplement (29) by any other algebraic equation of the form 

S L Bat&ski and P Jaranowski 

&xi,  y')  = c (30) 

where 8 is a given function such that 

where o = 1, , . . , n - 1. The adding of (30) to (29) leads again to a unique solution 
which describes the same world line as before, but now, in general, in terms of a non-affine 
parameter. 

Now we would like to find such a Lagrangian L(qi, U') for which agiven homogeneous 
Lagrangian L(x', y') would be its Jacobi Lagrangian, whereas (30) would be a consequence 
(cf (28)) of the energy conservation law for L(q', U'). 

The solution to this problem will be found in two steps. In the first step, a family 
of Lagrangians L will be constructed for which a given function E(q', U') is its energy 
function. Since a Lagrangian and its energy function are related to each other by a Legendre 
transformation (20). we can consider the equation 

as a partial differential equation for an unknown function L(q', U]). In this equation, vi are 
independent variables and q j  are treated as parameters. By suppressing the dependence on 
the parameters, (32) can be treated as a linear inhomogeneous partial differential equation of 
the first order for L(u'). In accordance with the general method of solving such equations, 
C will be sought in the form of an implicit function 

v (L, u 1 , .  . . , U") = 0. (33) 

Therefore, (32) will become a linear homogeneous differential equation 

for the function V(L, U', . ..,U"). The corresponding characteristic equations 

can then easily be solved explicitly in the form 

d ( r )  =tier 

where r now parametrizes the solutions and where the indefinite integral is used, with cj 
and c being n + 1 integration constants. 
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Solving (34) requires knowledge of a complete set of independent first integrals of (35). 
We c q  construct them by eliminating r from the solutions (36). Thus, a possible complete 
set of the first integrals of (35) is given by the set of functions 

U i  

437 
*j(U')  = - = E {  

where the summation convention applies to all indices ranging from 1 ton  and the relations 

have been used. The indefinite integral in (38) can be simplified after the integration variable 
r is replaced by p = (uiui)'p. We then have 

ui dui ui d(cie') 
dp=-- = p d r  432- m 

and 

where the index 'subst' means that first the integration should be performed, and then 
afterwards the expressions 

p = m  "== U' 

should be substituted for the variables p and 4. Thus, in (41) we first have to compute the 
integral 

(43) 

and we may, meanwhile, disregard the way in which the integration variable was defined. 
To facilitate the computation, we introduce a new variable 

1 
P / E ( 4 p ,  ..., bp),dp 

432 x = -  
P 

where, from the point of view of the integration in (43), 
Thus, 

is just a constant factor. 
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Performing now the substitution (42), we obtain the first integral (38) in the form 

S L B e ' s k i  and P Jaranowski 

In accordance with the general method of solving first-order partial differential equations, 
the general solution of (34) is of the form 

v = V(+Cl(IJ', Q, $ d u i ) ,  . . . , +"(Vi ) )  (46) 

where V is an arbitrary function in n + 1 variables. Therefore, the general solution of (32) 
is given in an implicit form as 

where @ is another arbitrary  function.^ In other words, a Lagrangian L(q', U') determined 
by a given energy function E(q',  d) is 

where A(q', vj) is an arbitrary function, homogeneous of degree one in the variables d. 
This is a general formula that determines a class of Lagrangians L describing a conservative 
dynamical system in terms of an apriori assigned energy function E of the system and an 
arbitrary homogeneous Lagrangian A. Formula (49) would certainly be helpful when trying 
to find a solution to the inverse Lagrange problem, i.e. finding a Lagrangian that leads to a 
system of differential equations describing a conservative dynamical system. 

Now, in the next step of the procedure, we will remove the arbitrariness of A by making 
use of the requirement that a given homogeneous Lagrangian L(x', yj) must be the Jacobi 
Lagrangian corresponding to the Lagrangian (49). 

In accordance with the Jacobi procedure described in section 2, to determine the Jacobi 
Lagrangian, one must first solve (19) in order to express 6 as a function @ of the variables 
xi and yj. After the function @ is known, the Jacobi Lagrangian can be found from (27). 
The application of this formula requires replacing in the Lagrangian .C(q', u j )  the variables 
q' by x i  and u j  by yj/@(xk. y'). Since A in (49) is a homogeneous function, we have 

Making use of the first equality in (27). we obtain 
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If we now equate the above expression and the known homogeneous Lagrangian L(x‘,  yj), 
we obtain an equation which permits us to determine the unknown function A as 

Throughout this equation, we can change the variables (xi, yj) to (q’, U’) and substitute 
the expression for A into (49). We obtain 

(53) 

By introducing a new integration variable ~ @ ( q ’ ,  U’) in the first of the integrals in (53). we 
can convert the two indefinite integrals into a definite one, obtaining 

Equation (54) represents the final formula which determines the Lagrangian L(q’, U’) in 
terms of an a priori given energy function E(q‘, u’) and an a priori given homogeneous 
Lagrangian L(x’,  y’) which, for a selected value of the energy constant C, is the Jacobi 
Lagrangian for L(q’. U’). The energy function defines, by means of (19), the function 
@ ( x i ,  y’) which is also required for defining the explicit expression for L(qi, U’). 

4. Examples 

To illustrate the procedure decribed in section 2, let us take a Lagrangian of the form 

L(q’, U’) = T(q’ ,  U’) + I ( q i ,  U’) - V(q‘) (55) 

where T is the ‘kinetic’ energy, which is assumed to be a homogeneous function of degree 
two in the velocities uj  

(56) 

The function I is the ‘interaction’ energy, being homogeneous of degree one in the velocities 

T(q‘ ,  ku’) = k2T(q‘,  U’) .  

I (q ’ ,  ku’) = kI(q‘,  U’) (57) 

and V is the ‘potential’ energy. 
The assumptions (56) and (57) imply the following Euler identities 

aT ar - v k = 2 T  - - - ‘ - I  a ~k auku - . 
Taking these identities into account, one can easily show that, in the present case, the energy 
function (20) is 

E($ ,  U’) = T ( q ’ ,  u’) + V ( q i ) .  (59) 
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The conslruction of the Jacobi Lagrangian, corresponding to (55). starts by solving (19) 
with respect to 8. In our example, (19) takes the form 

T x , - + V(q')  = C 
( i  3 

and, due to homogeneity assumptions, its solution is 

c - V ( X ' )  ' 

The function @ introduced in section 2 is now given by the right-hand side of (61). It is 
evident that, in this example, @ is homogeneous of degree one in the variables y j ,  which is 
in accordance with the general property (21). The next element required for the construction 
of the Jacobi Lagrangian (27) is the function i, which is defined as 

In the present case, it is 

Substituting the expressions (61) for @ and (63) for 
the Jacobi Lagrangian corresponding to (55): 

into (27), we find the final form of 

(W LJ(x',  y') = 2T(x', y j ) d m +  Z(xi, y j ) .  

In the particular case of 
e V(q') = o  c =  1 T(q' ,  U') = i g i j ( q k ) v i u j  Z(q', U') = ;Ai(q')v' 2 

we obtain 

Li(x', Y ' )  I - $ - - -  - gc,(Xk)y'y' + ;Ai(Xk)Y' e 

which, in particular, demonstrates how action (1) may be deduced from (2). 

which admit an energy function of the form 
As another example, formula (49) may be used to find all the Lagrangians C. = L(q', U ] )  

E(q',  U') = T(q', U') + V(q')  

where T is again a homogeneous function of degree two in u j .  Since 

then from (49) we have 

L(q', U') = T(q' ,  U') - V(q')  + A(qi,  U') 

where A is an arbitrary function, homogeneous of degree one in the variables d .  

can be found in [SI. 
Yet another application of the present formalism to the standard homogeneous dynamics 
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Appendix 

In accordance with the implicit-function theorem, by virtue of (19). we can calculate the 
derivatives of the function q5 with respect to the variables xi and yj: 

Starting from definition (27) of the homogeneous Lagrangian LJ, with the aid of (A2) and 
(20). we obtain 

Let 

r =rank(-) aZL, 
ay' ay' 

where r c n. To prove that r = n - 1, as stated in the discussion following (27), suppose 
that r < n - 1. It can easily be checked using (A3) that, always, 

i.e. the vector (yl , .  . . , y") is an eigenvector of the matrix (a2LI/ayiayj) belonging to 
an eigenvalue equal to zero. Because r < n - 1, there must exist another vector, say 
(z', . . . , z"), which is linearly independent of (yl,. . . , y") ,  such that 

Contracting (A3) with zj, using (A5). gives, after some manipulations, 

Because the vectors y' and z j  are linearly independent, the vector in the brackets in (A6) is a 
non-zero vector. Thus, (A6) implies that zero is the eigenvalue of the matrix (a2L/au'avj), 
which means that det(a2L/auiauj) = 0. As a result, if det(a2C/auiau') # 0, we must 
always haver  = n - 1. 
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